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Small cover

An n-dimensional small cover is a closed n-manifold M with a
locally standard Zn

2-action whose orbit space can be identified
with a simple convex polytope P.

π : M −→ P

The Zn
2-action on M determines a Zn

2-valued
characteristic function λ on the set of facets of P

λ : {F1,F2, · · · ,Fm} −→ Zn
2

such that
∀ f = F1 ∩ F2 ∩ · · · ∩ Fk,
Gf

∆
= ⟨λ(F1), λ(F2), · · · , λ(Fk)⟩ ∼= Zk

2.

Rk: F(P) ∆
= {F1,F2, · · · ,Fm}.
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Small cover

Small cover
M = P × Zn

2/ ∼

where (p, g) ∼ (q, h) iff p = q, g−1h ∈ Gf(p), and f (p) is the
unique face of P that contains p in its relative interior.

Real moment-angle manifold

RZP = P × Zm
2 / ∼

The universal cover space of M

M = P × W/ ∼

where W = ⟨sF,∀F ∈ F(P) | s2
F = 1, (sFsF ′)2 = 1,F ∩ F ′ ̸= ∅⟩ is

the right-angled Coxeter group of P.
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Borel construction

The Borel construction(or the homotopy quotient of Zn
2 on

M):

BP = M ×Zn
2

EZn
2 ≃ RZP ×Zm

2
EZm

2 ≃ M×W EW

where BP only depends on P and its face structure.

Then M → BP → BZn
2 induces an exact sequence

1 −→ π1(M) −→ W ϕ−→ Zn
2 −→ 1 (1)

where W ∼= π1(BP) and ϕ(sF) = λ(F) for any facet F of P.

3



Borel construction

The Borel construction(or the homotopy quotient of Zn
2 on

M):

BP = M ×Zn
2

EZn
2 ≃ RZP ×Zm

2
EZm

2 ≃ M×W EW

where BP only depends on P and its face structure.
Then M → BP → BZn

2 induces an exact sequence

1 −→ π1(M) −→ W ϕ−→ Zn
2 −→ 1 (1)

where W ∼= π1(BP) and ϕ(sF) = λ(F) for any facet F of P.

3



Orbifold

1. An orbifold is a singular space locally modeled on Rn

modulo finite group actions.

2. The notion of orbifold covering is generalizing the
usual notion in the topological category, and all basic
results in the topological covering theory can be
extended to the orbifold category.

3. An orbifold is good if it has some covering orbifold
which is a closed manifold. Otherwise it is bad.
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Orbifold

4. An orbifold has an universal cover. Furthermore, if
an orbifold is good, then the universal cover is a
simply connected manifold.

5. The orbifold fundamental group of an orbifold is
defined as the group of deck transformations of the
associated universal covering space, denoted by πorb

1 .
6. The notion of orbifold fibration is generalizing the

usual notion of fibration, and there is an Serre’s long
exact sequence of homotopy groups.
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Orbifold coverings

An n-dimensional simple polytope P is a good Zn
2-orbifold,

which is called right-angled Coxeter orbifold. And
π

orb(P)
1 = W.

Consider the following orbifold coverings.

RZP � π1(RZP) M π1(RZP) === [W,W ]

M
�

π 1(
M)Z m−n2

-

=⇒ π1(M)
?

- W
? ϕ -

�........
γ
..........

Zn
2

P

Zn
2

?�

W

Z m2

-

Zm−n
2

?
- Zm

2

?
- Zn

2

wwwwwwwww
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Cell decomposition

1⃝ 1⃝

1⃝ 1⃝

2⃝ 2⃝

3⃝

3⃝ 3⃝
1⃝ 1⃝

2⃝2⃝

1⃝ 1⃝
3⃝

4⃝

5⃝

6⃝

7⃝
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F

F

F′ F′

p0p0

p0 p0

gg · λ(F)

g · λ(F′)gλ(F)λ(F′)

gg · λ(F)

g · λ(F′)gλ(F)λ(F′)

p0 p0

p0p0

xF,gxF,gλ(F)
F

xF′,g

xF,gλ(F′)

xF′,gλ(F)

F

F′F′

Relation-1: xF,gxF,gλ(F) = 1
Relation-2: xF,gxF ′,gλ(F) = xF ′,gxF,gλ(F ′)

Cell- 1⃝
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p0 p0

p0 p0

F′ F′ F′ F′

FF

F F

Relation-3: xF,g = 1, p0 ⊂ F
Relation-2: xF,gxF′,gλ(F) = xF′,gxF,gλ(F′)
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Presentation of π1(M)

Generator: xF,g
Relation: [σF(g) = g · λ(F)]

xF,gxF,σF(g) = 1
xF,gxF ′,σF(g) = xF ′,gxF,σF′ (g)
xF,g = 1

Presentation of π1(M, p0)

π1(M, p0) = ⟨xF,g,F ∈ F(P), g ∈ Zn
2 |xF,gxF,σF(g) = 1;

xF,gxF ′,σF(g) = xF ′,gxF,σF ′ (g), F ∩ F ′ ̸= ∅;

xF,g = 1, p0 ∈ F; ⟩
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Relation between π1(M) and W

M = Q × π1(M)/ ∼= P × W/ ∼

F

F1

F

F1

F
F2

xF,1(Q, 1) 7→ (Q, xF,1)

sF(P, 1) 7→ (P, sF)

xF,1(P, 1) - (P, sF2sF1sF)

γ(λ(F)) · sF(P, 1)
?

...............
- sF2sF1sF(P, 1)

6

Rk: λ(F1,F2,F,F ′) = (e1, e2, e1e2, e2).
11
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Relation between π1(M) and W

α : π1(M, p0) −→W
xF,g 7−→ γ(σF(g)) · γ(σF(1))sF · (γ(σF(g)))−1

= γ(σF(g)σF(1)) · sF · γ(σF(g))
= γ(g)sFγ(σF(g))

1 −→ π1(M)
α−→ W ϕ−→ Zn

2 −→ 1 (2)

12



Semidirect product

1 - π1(M)
α - W

ϕ -�
γ

Zn
2 - 1

Then W = π1(M)⋊ψ Zn
2, where ψh(x) = α−1(γ(h)α(x)γ(h−1)).

ψh(xF,g) = α−1(γ(h)α(xF,g)γ(h−1))

= α−1(γ(h)γ(g)sFγ(σF(g))γ(h−1))

= α−1(γ(gh)sFγ(σF(gh)))
= ψgh(xF,1)

13



Idea

M .........................

hard

....................- π1(M)

↓

P

π

?
..........................

easy

........................- W

α

?
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Some notions

For any proper face f of P,
We call Mf

△
= π−1(f ) the facial submanifold of M

corresponding to f.

Define F(f⊥) △
= {F ∈ F(P) | dim(f ∩ F) = dim(f )− 1}. So

F(f⊥) consists of those facets of P that intersect f
transversely.
A submanifold Σ in M is called π1-injective if the inclusion
Σ ↪→ M induces a monomorphism in the fundamental group.
A k-circuit in the simple polytope P is a simple loop on the
boundary of P which intersects transversely with the interior
of exactly k distinct edges,

and a k-circuit is called prismatic
if the endpoints of those edges are distinct.

15
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π1-injectivity of facial submanifolds

Theorem (Wu-Yu, 2017)
Let M be a small cover over a simple polytope P and f be a proper
face of P. The following two statements are equivalent.

> The facial submanifold Mf is π1-injective.
> For any F,F ′ ∈ F(f⊥), we have f ∩ F ∩ F ′ ̸= ∅ whenever

F ∩ F ′ ̸= ∅.

Rk: The π1-injectivity of a facial submanifold of small cover only
depends on the local face structure of f in P.
Rk: We can determine the kernel of i∗ : π1(Mf) −→ π1(M).
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Other results

A simple polytope P is called a flag polytope if a collection of
facets of P has common intersection whenever they pairwise
intersect.

Proposition (Davis)
Let M be a small cover over P. Then M is aspherical if and only if
P is flag.

Proposition (Wu-Yu, 2017)
Let M be a small cover over P. Then P is flag if and only if every
facial submanifold of M is π1-injective.

Proposition (Wu-Yu, 2017)
For any small cover M over a 3-dimensional simple polytope P,
there always exists a facet F of P so that the facial submanifold
MF is π1-injective.

17
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Prime decomposition theorem

Let M be a connected 3-manifold.
M is called prime if M = M1#M2 implies M1 = S3 or
M2 = S3.

M is called irreducible if every embedded 2-sphere bounds a
3-ball.

An prime 3-manifold is irreducible except S2-bundle
over S1.

Theorem (Kneser, Prime Decomposition Theorem)
Every compact oriented 3 manifold M factors as a connected sum
of prime manifolds, M ∼= M1# · · ·#Mn , and this decomposition is
unique up to insertion or deletion of S3 summands.
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Prime decomposition theorem

Let M be a connected 3-manifold.
A compact embedded surface Σ is called 2-sided if it has a
closed neighborhood in M homeomorphic to Σ× I.

M is P2-irreducible if it is irreducible and contains no 2-sided
RP2.

An oriented manifold is P2-irreducible if and only if it is
irreducible.
A compact embedded surface Σ is called incompressible if
Σ ̸= S2 and any embedded 2-disk D in M with D ∩ Σ = ∂D
also bounds a disk in Σ.
A 2-sided surface except S2 in M is incompressible if and only
if it is π1-injective.
M is called Haken if it is a compact, P2-irreducible 3-manifold
that contains an 2-sided incompressible surface.

19



Prime decomposition theorem

Let M be a connected 3-manifold.
A compact embedded surface Σ is called 2-sided if it has a
closed neighborhood in M homeomorphic to Σ× I.
M is P2-irreducible if it is irreducible and contains no 2-sided
RP2.

An oriented manifold is P2-irreducible if and only if it is
irreducible.

A compact embedded surface Σ is called incompressible if
Σ ̸= S2 and any embedded 2-disk D in M with D ∩ Σ = ∂D
also bounds a disk in Σ.
A 2-sided surface except S2 in M is incompressible if and only
if it is π1-injective.
M is called Haken if it is a compact, P2-irreducible 3-manifold
that contains an 2-sided incompressible surface.

19



Prime decomposition theorem

Let M be a connected 3-manifold.
A compact embedded surface Σ is called 2-sided if it has a
closed neighborhood in M homeomorphic to Σ× I.
M is P2-irreducible if it is irreducible and contains no 2-sided
RP2. An oriented manifold is P2-irreducible if and only if it is
irreducible.

A compact embedded surface Σ is called incompressible if
Σ ̸= S2 and any embedded 2-disk D in M with D ∩ Σ = ∂D
also bounds a disk in Σ.
A 2-sided surface except S2 in M is incompressible if and only
if it is π1-injective.

M is called Haken if it is a compact, P2-irreducible 3-manifold
that contains an 2-sided incompressible surface.

19



Prime decomposition theorem

Let M be a connected 3-manifold.
A compact embedded surface Σ is called 2-sided if it has a
closed neighborhood in M homeomorphic to Σ× I.
M is P2-irreducible if it is irreducible and contains no 2-sided
RP2. An oriented manifold is P2-irreducible if and only if it is
irreducible.
A compact embedded surface Σ is called incompressible if
Σ ̸= S2 and any embedded 2-disk D in M with D ∩ Σ = ∂D
also bounds a disk in Σ.

A 2-sided surface except S2 in M is incompressible if and only
if it is π1-injective.
M is called Haken if it is a compact, P2-irreducible 3-manifold
that contains an 2-sided incompressible surface.

19



Prime decomposition theorem

Let M be a connected 3-manifold.
A compact embedded surface Σ is called 2-sided if it has a
closed neighborhood in M homeomorphic to Σ× I.
M is P2-irreducible if it is irreducible and contains no 2-sided
RP2. An oriented manifold is P2-irreducible if and only if it is
irreducible.
A compact embedded surface Σ is called incompressible if
Σ ̸= S2 and any embedded 2-disk D in M with D ∩ Σ = ∂D
also bounds a disk in Σ.
A 2-sided surface except S2 in M is incompressible if and only
if it is π1-injective.

M is called Haken if it is a compact, P2-irreducible 3-manifold
that contains an 2-sided incompressible surface.

19



Prime decomposition theorem

Let M be a connected 3-manifold.
A compact embedded surface Σ is called 2-sided if it has a
closed neighborhood in M homeomorphic to Σ× I.
M is P2-irreducible if it is irreducible and contains no 2-sided
RP2. An oriented manifold is P2-irreducible if and only if it is
irreducible.
A compact embedded surface Σ is called incompressible if
Σ ̸= S2 and any embedded 2-disk D in M with D ∩ Σ = ∂D
also bounds a disk in Σ.
A 2-sided surface except S2 in M is incompressible if and only
if it is π1-injective.
M is called Haken if it is a compact, P2-irreducible 3-manifold
that contains an 2-sided incompressible surface.

19



Prime decomposition theorem

Proposition
Let M be a 3-dimensional small cover over a simple polytope
P( ̸= ∆3) , then TFAE.

M is P2-irreducible.
M is prime.
M is Haken.
M is aspherical.
P is flag.
There is no prismatic 3-circuit in P.
π2(M) is trivial.
All facial submanifold is π1-injective.
In particular, the prime decomposition of an oriented 3-small cover
is equivalent to cutting survey along prismatic 3-circuits in P.

Rk: RP3 is prime and irreducible but spherical.
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JSJ-decomposition theorem

A properly embedded surface Σ ⊂ M is called ∂-parallel if it is
isotopic, fixing ∂Σ , to a subsurface of ∂M.

A compact 3-manifold M is called atoroidal if every
incompressible torus in M is ∂-parallel. Or equivalently, the
subgroup Z⊕ Z of its fundamental group that is not
conjugate to a peripheral subgroup (i.e. the image of the map
on fundamental group is induced by an inclusion of a
boundary component).Otherwise, it is called toroidal.
A Seifert fiber space is a circle bundle over a 2-dimensional
orbifold.
A manifold M is called hyperbolic if it admits a complete
Riemannian metric of constant sectional curvature −1.
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JSJ-decomposition theorem

Theorem (Jaco-Shalen-Johannson, Torus Decomposition Theorem)
Let M be a compact, oriented, irreducible 3-manifold with empty
or toroidal boundary. There exists a (possibly empty) collection of
disjointly embedded incompressible tori T1, · · · ,Tm such that each
component of M cut along T1 ∪ · · · ∪ Tm is atoroidal or Seifert
fibered. Any such collection of tori with a minimal number of
components is unique up to isotopy.

Theorem (Perelman, Geometrization Theorem)
Let M be a irreducible colsed 3-manifold. There exists a (possibly
empty) collection of disjointly embedded incompressible surface
S1, · · · ,Sm which are either tori or Klein bottles, such that each
component of M cut along S1 ∪ · · · ∪ Sm is geometric. Any such
collection of tori with a minimal number of components is unique
up to isotopy.
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JSJ-decomposition theorem

Proposition
Let M be a 3-small cover over a simple polytope P, then M is
atoroidal if and only if there is no prismatic 4-circuit in P.
In particular, the JSJ decomposition or geometric decomposition of
a 3-small cover is equivalent to cutting surgery along prismatic
4-circuits in P.
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Geometric structure

Theorem (Thurston, Hyperbolization Theorem)
Every irreducible atoroidal closed 3-manifold with infinite
fundamental group is hyperbolic.

Proposition
Let M be a 3-small cover over a simple polytope P(̸= ∆3), then M
is hyperbolic if and only if there is no prismatic 3 or 4-circuit in P.

24



Geometric structure

Theorem (Thurston, Hyperbolization Theorem)
Every irreducible atoroidal closed 3-manifold with infinite
fundamental group is hyperbolic.

Proposition
Let M be a 3-small cover over a simple polytope P(̸= ∆3), then M
is hyperbolic if and only if there is no prismatic 3 or 4-circuit in P.

24



Geometric structure

Proposition
A small cover M over a simple 3-polytope P can admit a
Riemannian metric with nonnegative scalar curvature if and only if
P is combinatorially equivalent to the cube [0, 1]3 or a polytope
obtained from ∆3 by a sequence of vertex cuts. In particular, all
the oriented 3-dimensional small covers that can admit Riemannian
metrics with non-negative scalar curvature are the two oriented
real Bott manifolds in dimension 3 and the connected sum of k
copies of RP3 for any k ≥ 1.
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End of Talk
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