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What is an orbifold?

An n-orbifold is a singular space locally modelled on quotients of
an open set of Rn by a finite group action.

Local group, underlying space (|X|).

X

V
∼

ψ = U ⊂ R2

(Z2)
2

↷

= U/(Z2)
2

ψ
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What is a Coxeter orbifold?

♣ Coxeter group

W = ⟨s1, s2, · · · , sm | (sisj)
mij = 1,∀1 ≤ i ≤ j ≤ m⟩

where mii = 1 and mij ≥ 2 for i ̸= j.

♣ (Coxeter 1935) Every finite Coxeter group has a representation as
a reflection group of Rn, and Rn/W ∼= Conem × Rn−m.

♣ A Coxeter n-orbifold is an orbifold locally modelled on Rn/W
where W finite Coxeter group.

♣ Coxeter orbifolds ⇒ manifolds with corners (Davis).
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How to define orbifold homolgy groups?

de Rham cohomology, Satake.

H∗
dR(X;R) ∼= H∗(|X|;R).

Equivariant homology, X = M/G,

H∗
eq(X;R) := H∗(EG ×G M;R).

Chen-Ruan cohomology of almost complex orbifolds,

H∗
CR(X;R) :=

⊕
(g)∈T

Hi−2l(g)(X(g);R)

where X(1) = X non-twisted sector, X(g) for g ̸= 1 twisted sector.
etc

3



How to define orbifold homolgy groups?

de Rham cohomology, Satake.

H∗
dR(X;R) ∼= H∗(|X|;R).

Equivariant homology, X = M/G,

H∗
eq(X;R) := H∗(EG ×G M;R).

Chen-Ruan cohomology of almost complex orbifolds,

H∗
CR(X;R) :=

⊕
(g)∈T

Hi−2l(g)(X(g);R)

where X(1) = X non-twisted sector, X(g) for g ̸= 1 twisted sector.
etc

3



How to define orbifold homolgy groups?

de Rham cohomology, Satake.

H∗
dR(X;R) ∼= H∗(|X|;R).

Equivariant homology, X = M/G,

H∗
eq(X;R) := H∗(EG ×G M;R).

Chen-Ruan cohomology of almost complex orbifolds,

H∗
CR(X;R) :=

⊕
(g)∈T

Hi−2l(g)(X(g);R)

where X(1) = X non-twisted sector, X(g) for g ̸= 1 twisted sector.

etc

3



How to define orbifold homolgy groups?

de Rham cohomology, Satake.

H∗
dR(X;R) ∼= H∗(|X|;R).

Equivariant homology, X = M/G,

H∗
eq(X;R) := H∗(EG ×G M;R).

Chen-Ruan cohomology of almost complex orbifolds,

H∗
CR(X;R) :=

⊕
(g)∈T

Hi−2l(g)(X(g);R)

where X(1) = X non-twisted sector, X(g) for g ̸= 1 twisted sector.
etc 3



q-CW complex (Poddar-Sarkar, Bahri-Nothbohm-Sarkar-Song)

q-cell: en/G, where |G |<∞.

q-CW complex: similar to usual CW complex.
(PS) Def of Horb

∗ : using the property

Hp
(
(Xn,Xn−1);Q

)
=

⊕
H̃p

( Dn/G
∂(Dn/G) ;Q

)

H̃p
( Dn/G
∂(Dn/G) ;Q

)
=

{
Hp−1(Sn−1

α /Gα;Q) if p ≥ 2
0 otherwise.

(BNSS) Integral homology of q-CW complexes with
cells in even dimensions.

4



q-CW complex (Poddar-Sarkar, Bahri-Nothbohm-Sarkar-Song)

q-cell: en/G, where |G |<∞.
q-CW complex: similar to usual CW complex.

(PS) Def of Horb
∗ : using the property

Hp
(
(Xn,Xn−1);Q

)
=

⊕
H̃p

( Dn/G
∂(Dn/G) ;Q

)

H̃p
( Dn/G
∂(Dn/G) ;Q

)
=

{
Hp−1(Sn−1

α /Gα;Q) if p ≥ 2
0 otherwise.

(BNSS) Integral homology of q-CW complexes with
cells in even dimensions.

4



q-CW complex (Poddar-Sarkar, Bahri-Nothbohm-Sarkar-Song)

q-cell: en/G, where |G |<∞.
q-CW complex: similar to usual CW complex.
(PS) Def of Horb

∗ : using the property

Hp
(
(Xn,Xn−1);Q

)
=

⊕
H̃p

( Dn/G
∂(Dn/G) ;Q

)

H̃p
( Dn/G
∂(Dn/G) ;Q

)
=

{
Hp−1(Sn−1

α /Gα;Q) if p ≥ 2
0 otherwise.

(BNSS) Integral homology of q-CW complexes with
cells in even dimensions.

4



q-CW complex (Poddar-Sarkar, Bahri-Nothbohm-Sarkar-Song)

q-cell: en/G, where |G |<∞.
q-CW complex: similar to usual CW complex.
(PS) Def of Horb

∗ : using the property

Hp
(
(Xn,Xn−1);Q

)
=

⊕
H̃p

( Dn/G
∂(Dn/G) ;Q

)

H̃p
( Dn/G
∂(Dn/G) ;Q

)
=

{
Hp−1(Sn−1

α /Gα;Q) if p ≥ 2
0 otherwise.

(BNSS) Integral homology of q-CW complexes with
cells in even dimensions.

4



q-CW complex (Poddar-Sarkar, Bahri-Nothbohm-Sarkar-Song)

q-cell: en/G, where |G |<∞.
q-CW complex: similar to usual CW complex.
(PS) Def of Horb

∗ : using the property

Hp
(
(Xn,Xn−1);Q

)
=

⊕
H̃p

( Dn/G
∂(Dn/G) ;Q

)

H̃p
( Dn/G
∂(Dn/G) ;Q

)
=

{
Hp−1(Sn−1

α /Gα;Q) if p ≥ 2
0 otherwise.

(BNSS) Integral homology of q-CW complexes with
cells in even dimensions.

4



q-CW complex (Poddar-Sarkar, Bahri-Nothbohm-Sarkar-Song)

q-cell: en/G, where |G |<∞.
q-CW complex: similar to usual CW complex.
(PS) Def of Horb

∗ : using the property

Hp
(
(Xn,Xn−1);Q

)
=

⊕
H̃p

( Dn/G
∂(Dn/G) ;Q

)

H̃p
( Dn/G
∂(Dn/G) ;Q

)
=

{
Hp−1(Sn−1

α /Gα;Q) if p ≥ 2
0 otherwise.

(BNSS) Integral homology of q-CW complexes with
cells in even dimensions.

4



Coxeter cellular complex

♣ Coxeter cell: en/W where W is a finite Coxeter group.
en is called the blow-up of en/W.
If W = 1, en/W = en is regular cell, otherwise, singular cell.

♣ Coxeter cellular complex: Every attaching map

ϕ : ∂en/W → Xn−1

preserves the local groups.

♣ The boundary of a regular cell contains no singular cell.
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An example

e2/Z2
A B

C DE

(⋆) E is a q-CW complex but not a Coxeter cellular complex.
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Orbifold cellular homology of Coxeter cellular complexes

Definition (Orientation of en/W)
The orientation of en/W is defined as the orientation of its blow-up en.

Definition (Chain group)

Cn = Z⟨{en/W}⟩.

How to define boundary maps?
d : Cn −→ Cn−1 is defined by their blow-up, which should be determined
by ϕ, ψ, ∂.

en ∂ //

ψ
��

∂en = Sn−1 ψ // ∂en/W

ϕ
��

en/W Φ // Xn−1
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When ϕ is trivial.

1
s1s1s2

s1s2s1 s2
s2s1

1s1

ψ

ψ

U3

U2

U1 Cosets Wβ

U1 = {1, s1}

((PP
PPP

PPP
PPP

P

U2 = {s1s2, s1s2s1} // {1, s1}

U3 = {s2, s2s1}

66nnnnnnnnnnnn

Figure: W =< s1, s2 | s2
1 = s2

2 = (s1s2)3 = 1 >

Key point: The presentation of coset Ui determines Ui → Wβ.

E.g. U2 = s1s2 · {1, s1} = s1s2s1 · {s1, 1}.
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The rule of presentation g of each coset.

Rule of g.
Each g is chosen with the shortest word length.

Let
d(en/W) =

∑
dβ

[
en−1
β /Wβ

]
.

Then each coset contributes a (−1)l(g)[en−1/Wβ] to dβ
[
en−1
β /Wβ

]
, where

l(g) is the word length of reduced g in W.

Remark
Another rule of g: Chosen with even word length if possible.
The associated orbifold homology is related to weight homology under
some special cases.
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ϕ is still trivial, dβ =?

en ∂ //

ψ

��

∂en = Sn−1 ϕ̃β // U × Wβ/ ∼

ψβ

��
en/W

Φβ // U = en−1
β /Wβ

If W = 1, then d is the usual boundary map in CW complex.

If W ̸= 1 and Wβ = 1,

then dβ = 0. (Since |W| is even.)

If W ̸= 1 and Wβ ̸= 1, then dβ = 0 for |W|
|Wβ | even or dβ = 1 for |W|

|Wβ | odd.

If #
(
S(W)− S(Wβ)

)
≥ 2, then |W|

|Wβ | always even. So dβ = 0.
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When ψ is trivial. (W = Wβ)

ϕ

ϕ : ∂D3/Z2 −→ X2

dβ = nβ

the degree of S1 −→ S1.
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Boundary map

d(en/W) =
∑

#S(Wβ)≥#S(W)−1
nβ

( |W|
|Wβ|

mod 2
)

en−1
β /Wβ.
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Generalization

Boundary map
The boundary map d : Cn −→ Cn−1 is defined by their blow-ups,

d(en/W)
∆
= [ϕ ◦ ψ

( ∑
g∈W

(−1)l(g)∂(en ∩ Xg)
)
]

where
l(g) is the word length of g in W;
Xg is a lifting of ϕ−1(en−1

β /Wβ) in en/W, that is, the coset indexed
by g.

Remark
It is valid in some non-Coxeter orbifolds.
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H∗ of Coxeter orbifolds

X: A Coxeter n-orbifold which admits a Coxeter cellular complex
structure.

F,Fβ: two faces of X s.t. F is a facet of Fβ.

If |W(F)|
|W(Fβ)|

odd, then F ∼ Fβ.

T := {All faces of X}/ ∼

14
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H∗ of Coxeter orbifolds

Theorem

Horb
i (X) =

⊕
J∈T

Hi−l(J)(XJ) (1)

where l(J) is the codimension of the highest dimensional face in J.

Remark
Which is an analogue of Chen-Ruan cohomology groups and
Hochster’s formula.
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Something different (Under Z-coefficient)

Horb
i (Dn/W, ∂(Dn/W)) ≇ Horb

i

( Dn/W
∂(Dn/W)

)

In some cases,

Horb
n (Dn/W, ∂(Dn/W)) ≇ Horb

n−1(∂(Dn/W)).

In some cases,
Horb

n (Sn/W) ≇ Z.
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Homology properties

Horb
i (Dn/W, ∂(Dn/W)) ∼=

{
Z, i = n
0, otherwise.

Hurewize theorem(
πorb

1 (X)
)ab ∼= H1(|X|)⊕ H1(Xsing,Z2).

The long exact sequence of pair, homotopic invariant, universal coefficient
theorem.
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Example-1

Example (Simple polytope)
Let P be a simple polytope equipped with a right-angled Coxeter
orbifold structure. Then the standard cubical decomposition of P is a
(righ-angled) Coxeter cellular decomposition of P. Then

πorb
1 (P) ∼= πorb

1 (P2) = WP

where WP is the right-angled Coxeter group of P.

Horb
i (P) = Zfn−i (2)

where fn−i is the number of (n − i)-faces of P.
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Example-2

Example (Coxeter cylinder)
Let Q be a solid cylinder with three facets F1,F2 and F3. F1 ∩F2 is labelled
by 2, and F1 ∩ F2 is labelled by 3. Then Q is a Coxeter orbifold. Q can be
decomposed to one 0-cell, three 1-cells, three 2-cells and two 3-cells.

F1
F2

F3 X1 ∼= D3,X[s1] = F1 ∼= D2

X[s2] = F2 ∪ F3 ∪ (F2 ∩ F3) ∼= D2

X[s1s2] = F1 ∩ F2 ∼= S1

Horb
i (Q) =


Z, i = 0, 2, 3
Z2, i = 1
0, otherwise.

Figure: Coxeter cylinder
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Example-3

Example (Surface with isolated singular points)

Let S is a closed genus 2 orientable surface with two isolated singular
points {v1, v2}, each vi has a local group Zni generated by a rotation.
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Example-3

Then we can give a cell decomposition of S.

πorb
1 (S) = ⟨x1, y1, x2, y2, s1, s2 | sn1

1 = sn2
2 = 1, [x1, y1][x2, y2]s1s2 = 1⟩

the homology groups of S,

Horb
i (S) ∼=


Z, i = 0, 2
Z4 ⊕ Z/(n1, n2)Z, i = 1
0, otherwise.
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