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What is an orbifold?

An n-orbifold is a singular space locally modelled on quotients of
an open set of Rn by a finite group action.

Local group, underlying space (|X|).

V
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2

↷
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= U ⊂ R2

X

↷
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ψ
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Example

Example
Let M be a manifold, G a discrete group acting properly on M, then the
isotropy subgroup Gx is finite for any x ∈ M. Now the orbit space M/G is
an orbifold, which is called a quotient orbifold.

G1 =< s1, s2 | s2
1 = s2

2 = (s1s2)2 = 1 >
G2 =< s1, s2 | s2

1 = s2
2 = (s1s2)3 = 1 >

BoundarySingular
set
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What is a Coxeter orbifold?

♣ Coxeter group

W = ⟨s1, s2, · · · , sm | (sisj)
mij = 1,∀1 ≤ i ≤ j ≤ m⟩

where mii = 1 and mij ≥ 2 for i ̸= j.

♣ (Coxeter 1935) Every finite Coxeter group has a representation as
a reflection group of Rn, and Rn/W ∼= Conem × Rn−m.

♣ A Coxeter n-orbifold is an orbifold locally modelled on Rn/W
where W is a finite Coxeter group.
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How to define orbifold homolgy groups?

de Rham cohomology, [Satake, 1956].

H∗
dR(X;R) ∼= H∗(|X|;R)

Cannot capture the orbifold structure.

Chen-Ruan cohomology of almost complex orbifolds, [CR, 2004],

H∗
CR(X;R) :=

⊕
(g)∈T

Hi−2l(g)(X(g);R)

where X(1) = X non-twisted sector, X(g) for g ̸= 1 twisted sector.
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Borel construction and equivariant homology

G

M

M/G

G

��

G

��
M ≃ //

π

��

EG × M

π

��
M/G (EG × M)/G

Borel space: EG ×G M ∆
= (EG × M)/G

Equivariant (co)homology of G-space M,

HG
∗ (M)

∆
= H∗(EG ×G M) ⇒ Horb

∗ (M/G)

H∗
G(M;R) ∆

= H∗(EG ×G M;R) ⇒ H∗
orb(M/G;R)
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How to define integral orbifold homolgy groups?

Orbifold singular homology, [Takeuchi-Yokoyama, 2006-2012].

s-H∗(X) ∼= H∗(|X|)

t-H∗(X;Q) ∼= H∗(|X|;Q)

where t-singular homology with Z-coefficient can capture the orbifold
structure.
Orbifold cellular homology, [PS, 2010] & [BNSS, 2019].
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q-CW complex (Poddar-Sarkar, Bahri-Nothbohm-Sarkar-Song)

q-cell: en/G, where |G |<∞.
q-CW complex: similar to usual CW complex.

(PS) Def of Horb
∗ : using the property

Hp
(
(Xn,Xn−1);Q

)
=

⊕
H̃p

( Dn/G
∂(Dn/G) ;Q

)

H̃p
( Dn/G
∂(Dn/G) ;Q

)
=

{
Hp−1(Sn−1

α /Gα;Q), p ≥ 2
0, otherwise

(BNSS) Integral homology of q-CW complexes with cells in even
dimensions.
Witout explicit boundary map.
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Special q-CW complex: Coxeter cellular complex

♣ Coxeter cell: en/W where W is a finite Coxeter group.

♣ Coxeter cellular complex: Every attaching map

ϕ : ∂en/W → Xn−1

preserves the local groups.
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Example

e2/Z2
A B

C DE

(⋆) E is a q-CW complex but not a Coxeter cellular complex.
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Orbifold cellular homology of Coxeter cellular complexes

Definition (Chain group)

Cn = Z⟨{en/W}⟩

d : Cn −→ Cn−1 should be determined by ϕ, ψ, ∂.

en ∂ //

ψ
��

∂en = Sn−1 ψ // ∂en/W

ϕ
��

en/W Φ // Xn−1

Definition (Boundary map of Coxeter cellular complex)

d(en/W) =
∑

nβΘ
( |W|
|Wβ|

)
en−1
β /Wβ

where Θ
(

n
)
=

{
1, n odd
0, n even

.
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When ϕ is trivial.

1
s1s1s2

s1s2s1 s2
s2s1

1s1

ψ

ψ

U3

U2

U1 Cosets Wβ

U1 = {1, s1}

((PP
PPP

PPP
PPP

P

U2 = {s1s2, s1s2s1} // {1, s1}

U3 = {s2, s2s1}

66nnnnnnnnnnnn

Figure: W =< s1, s2 | s2
1 = s2

2 = (s1s2)3 = 1 >

Key point: The presentation of coset Ui determines Ui → Wβ.

E.g. U2 = s1s2 · {1, s1} = s1s2s1 · {s1, 1}.
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The rule of presentation g of each coset

Rule of g.
Each g is chosen with the shortest word length.

Remark
The choice of g is not unique, which leads to different orbifold homology.

Let
d(en/W) =

∑
dβ

[
en−1
β /Wβ

]

Then each coset contributes a (−1)l(g)[en−1/Wβ] to dβ
[
en−1
β /Wβ

]
, where

l(g) is the word length of reduced g in W.
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ϕ is still trivial, dβ =?

en ∂ //

ψ

��

∂en = Sn−1 ϕ̃β // U × Wβ/ ∼

ψβ

��
en/W

Φβ // U = en−1
β /Wβ

If W = 1, then d is the usual boundary map in CW complex.

If W ̸= 1 and Wβ = 1,

then dβ = 0. (Since |W| is even.)

If W ̸= 1 and Wβ ̸= 1, then dβ = 0 for |W|
|Wβ | even or dβ = 1 for |W|

|Wβ | odd.

⇒ Θ.
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When ψ is trivial (W = Wβ).

ϕ

ϕ : ∂D3/Z2 −→ X2

dβ = nβ

the degree of S1 −→ S1.
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Boundary map

d : Cn → Cn−1,

d(en/W) =
∑

nβΘ
( |W|
|Wβ|

)
en−1
β /Wβ

where Θ
(

n
)
=

{
1, n odd
0, n even

.

d2 = 0 ⇒ Horb
∗
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H∗ of Coxeter cellular complexes

Theorem (Lü-Wu-Yu, 2021)

Let X be a Coxeter cellular complex, then

Horb
i (X) =

⊕
J∈T

Hi−l(J)(XJ)

where l(J) is the codimension of the highest dimensional face in J.

Remark
Which is an analogue of Chen-Ruan cohomology groups and
Hochster’s formula.
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Something different (Under Z-coefficient)

Horb
i (Dn/W, ∂(Dn/W)) ≇ Horb

i

( Dn/W
∂(Dn/W)

)

In some cases,

Horb
n (Dn/W, ∂(Dn/W)) ≇ Horb

n−1(∂(Dn/W))

In some cases,
Horb

n (Sn/W) ≇ Z
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Homology properties

Horb
i (Dn/W, ∂(Dn/W)) ∼=

{
Z, i = n
0, otherwise

Hurewize theorem(
πorb

1 (X)
)ab ∼= H1(|X|)⊕ Horb

1 (X, |X|;Z2)

The long exact sequence of pair, homotopic invariant, universal coefficient
theorem.

New simplicial/singular homology (̸= t, s-H∗ by TY); characteristic class;
etc.
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Example

Example (Coxeter cylinder)
Let Q be a solid cylinder with three faces F1,F2 and F3. F1 ∩ F2 is labelled
by 2, and F2 ∩ F3 is labelled by 3. Then Q is a Coxeter orbifold. Q can be
decomposed to one 0-cell, three 1-cells, three 2-cells and two 3-cells.

F1
F2

F3 X1 ∼= D3,X[s1] = F1 ∼= D2

X[s2] = F2 ∪ F3 ∪ (F2 ∩ F3) ∼= D2

X[s1s2] = F1 ∩ F2 ∼= S1

Horb
i (Q) =


Z, i = 0, 2, 3
Z2, i = 1
0, otherwise

Figure: Coxeter cylinder
19



Thank You

Wu, Lisu

Email: wulisuwulisu@qq.com

wulisuwulisu@qq.com
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