The homology groups of colored polytopes

Li-Su Wu (joint with Fangbai Yang)

Shandong University of Science and Technology

Workshop on Toric Topology 2024 in Shanghai

August 13-14, 2024

Content

- 1. Colored polytope and colored polyhedral complex
- 2. Homology groups of colored polyhedral complex
- 3. Colored graph and applications

Small cover

• An *n*-dimensional *small cover* is a closed *n*-manifold M with a locally standard \mathbb{Z}_2^n -action whose orbit space is a simple *n*-polytope P.

$$\pi: M \longrightarrow P$$

Small cover

• An *n*-dimensional *small cover* is a closed *n*-manifold M with a locally standard \mathbb{Z}_2^n -action whose orbit space is a simple *n*-polytope P.

$$\pi: M \longrightarrow P$$

• The \mathbb{Z}_2^n -action on M determines a *characteristic map* λ on the set of facets of P

$$\lambda: \mathcal{F} \stackrel{\Delta}{=} \{F_1, F_2, \cdots, F_m\} \longrightarrow \mathbb{Z}_2^n$$

Small cover

• An *n*-dimensional *small cover* is a closed *n*-manifold M with a locally standard \mathbb{Z}_2^n -action whose orbit space is a simple *n*-polytope P.

$$\pi: M \longrightarrow P$$

• The \mathbb{Z}_2^n -action on M determines a *characteristic map* λ on the set of facets of P

$$\lambda: \mathcal{F} \stackrel{\Delta}{=} \{F_1, F_2, \cdots, F_m\} \longrightarrow \mathbb{Z}_2^n$$

such that

$$\forall f = F_1 \cap F_2 \cap \dots \cap F_i,$$

$$G_f \stackrel{\triangle}{=} L(\lambda(F_1), \lambda(F_2), \dots, \lambda(F_i)) \cong (\mathbb{Z}_2)^i. \tag{*}$$

• Simple n-polytope P and characteristic map λ determine a small cover

$$M = P \times \mathbb{Z}_2^n / \sim$$

where $(p,g) \sim (q,h)$ iff p=q, $g^{-1}h \in G_{f(p)}$, and f(p) is the unique face of P that contains p in its relative interior, $G_{f(p)}=\{1\}$ if $p \in P^{\circ}$.

• Simple n-polytope P and characteristic map λ determine a small cover

$$M = P \times \mathbb{Z}_2^n / \sim$$

where $(p,g) \sim (q,h)$ iff p=q, $g^{-1}h \in G_{f(p)}$, and f(p) is the unique face of P that contains p in its relative interior, $G_{f(p)}=\{1\}$ if $p \in P^{\circ}$.

• In general, simple n-polytope P and characteristic map $\lambda: \mathcal{F} \longrightarrow \mathbb{Z}_2^k$ satisfying condition (\star) determine a closed n-manifold in the same way.

$$N = P \times \mathbb{Z}_2^k / \sim$$

• Simple n-polytope P and characteristic map λ determine a small cover

$$M = P \times \mathbb{Z}_2^n / \sim$$

where $(p,g) \sim (q,h)$ iff p=q, $g^{-1}h \in G_{f(p)}$, and f(p) is the unique face of P that contains p in its relative interior, $G_{f(p)}=\{1\}$ if $p \in P^{\circ}$.

In general, simple n-polytope P and characteristic map
 λ : F → Z₂^k satisfying condition (*) determine a closed
 n-manifold in the same way.

$$N = P \times \mathbb{Z}_2^k / \sim$$

• Colored polytope P_{λ} :=simple n-polytope P + characteristic map λ . (Condition (\star) is not essential.)

• Simple n-polytope P and characteristic map λ determine a small cover

$$M = P \times \mathbb{Z}_2^n / \sim$$

where $(p,g) \sim (q,h)$ iff p=q, $g^{-1}h \in G_{f(p)}$, and f(p) is the unique face of P that contains p in its relative interior, $G_{f(p)}=\{1\}$ if $p \in P^{\circ}$.

• In general, simple n-polytope P and characteristic map $\lambda: \mathcal{F} \longrightarrow \mathbb{Z}_2^k$ satisfying condition (\star) determine a closed n-manifold in the same way.

$$N = P \times \mathbb{Z}_2^k / \sim$$

- Colored polytope P_{λ} :=simple n-polytope P + characteristic map λ . (Condition (\star) is not essential.)
- The characteristic map λ is called a *colored map*, $\lambda(F)$ is called a *color* on facet F.

Homology of colored polytope

• Weighted homology.

 P_{λ} : colored polytope; K: dual complex of P_{λ} . Each simplex $\sigma_f \in K$ endowing with weight $w(\sigma_f) = |G_f|$.

$$\sigma_f \subset \sigma_f \Leftrightarrow f \subset f \Rightarrow G_f \subset G_f \Rightarrow |G_f| |G_f|$$

Hence K is a weighted complex.

Homology of colored polytope

Weighted homology.

 P_{λ} : colored polytope; K: dual complex of P_{λ} . Each simplex $\sigma_f \in K$ endowing with weight $w(\sigma_f) = |G_f|$.

$$\sigma_f \subset \sigma_f \Leftrightarrow f \subset f \Rightarrow G_f \subset G_f \Rightarrow |G_f| |G_f|$$

Hence K is a weighted complex. Weighted boundary operator

Homology of colored polytope

• Stratified simplicial homology (st-homology). P_{λ} : colored polytope; K: a triangulation adapted to P_{λ} .

$$H_i^{st}(K) = H_i^{wt}(K, \Sigma K)$$

Faces of colored polytope

• Any face of a colored polytope is colored. Let P_{λ} be a colored polytope, f be a face of P_{λ} . There is an exact sequence

$$0 \longrightarrow W_f \stackrel{i}{\longrightarrow} V_P \stackrel{q}{\longrightarrow} V_P/W_f \longrightarrow 0,$$

where $W_f = L(\{\lambda(F) \mid f \subset F \in \mathcal{F}\})$, $V_P = L(\{\lambda(F) \mid F \in \mathcal{F}\})$. Then there is an *induced colored map*

$$\lambda_f: \mathcal{F}_f \longrightarrow V_P/W_f$$

such that $\lambda_f(s) = q \circ \lambda(F_s)$ for facet $s = f \cap F_s$ of f.

 A polyhedral complex is a finite set of simple polytopes such that the intersection between the polytopes is either empty or is a face of each of them.

 A polyhedral complex is a finite set of simple polytopes such that the intersection between the polytopes is either empty or is a face of each of them.

- A polyhedral complex is a finite set of simple polytopes such that the intersection between the polytopes is either empty or is a face of each of them.
- A polyhedral complex K is called a *colored polyhedral* complex, if there is a colored map $\lambda_f \colon \mathcal{F}_f \longrightarrow V_f$ for each face $f \in K$, such that

- A polyhedral complex is a finite set of simple polytopes such that the intersection between the polytopes is either empty or is a face of each of them.
- A polyhedral complex K is called a *colored polyhedral* complex, if there is a colored map $\lambda_f \colon \mathcal{F}_f \longrightarrow V_f$ for each face $f \in K$, such that
 - For any colored polytopes P_1, P_2 containing f as a common face, the induced colored maps are the same and equal to λ_f .

- A polyhedral complex is a finite set of simple polytopes such that the intersection between the polytopes is either empty or is a face of each of them.
- A polyhedral complex K is called a *colored polyhedral* complex, if there is a colored map $\lambda_f \colon \mathcal{F}_f \longrightarrow V_f$ for each face $f \in K$, such that
 - For any colored polytopes P_1, P_2 containing f as a common face, the induced colored maps are the same and equal to λ_f .

- A polyhedral complex is a finite set of simple polytopes such that the intersection between the polytopes is either empty or is a face of each of them.
- A polyhedral complex K is called a *colored polyhedral* complex, if there is a colored map $\lambda_f \colon \mathcal{F}_f \longrightarrow V_f$ for each face $f \in K$, such that
 - For any colored polytopes P_1, P_2 containing f as a common face, the induced colored maps are the same and equal to λ_f .
- A colored polytope is a colored polyhedral complex.

• *i*-th chain groups

$$C_i = \begin{cases} (\mathbb{Z}_2)^{|\mathcal{F}_0|}, & i = 0, \\ \bigoplus_{f \in \mathcal{F}_i} V_f, & i \ge 1, \end{cases}$$

where \mathcal{F}_i is the *i*-face set of K_{λ} , any face $f \in \mathcal{F}_i$ is a colored polytope, V_f is the module generated by the image of λ_f .

• *i*-th chain groups

$$C_i = \begin{cases} (\mathbb{Z}_2)^{|\mathcal{F}_0|}, & i = 0, \\ \bigoplus_{f \in \mathcal{F}_i} V_f, & i \ge 1, \end{cases}$$

where \mathcal{F}_i is the *i*-face set of K_{λ} , any face $f \in \mathcal{F}_i$ is a colored polytope, V_f is the module generated by the image of λ_f .

ullet Define boundary map $d_i:C_i\longrightarrow C_{i-1}$ via

$$d_i([f,v]) = \sum_{s \subset f} [s,q(v)]$$

where $s \in \mathcal{F}_f$ is a facet of f, and q is the quotient map in exact sequence

$$0 \longrightarrow W_s \stackrel{i}{\longrightarrow} V_f \stackrel{q}{\longrightarrow} V/W_s \longrightarrow 0.$$

•
$$d_i \circ d_{i+1} = 0$$
.

- $d_i \circ d_{i+1} = 0$.
- $H_i(K_{\lambda}; \mathbb{Z}_2) = \ker d_i / \text{im } d_{i+1}$ is called the *i-th colored homology group* of colored polyhedral complex K_{λ} , abbreviated as $H_i(K_{\lambda})$.

Theorem

Let P_{λ} be a colored m-gon with edge set $\mathcal{E} = \{e_1, e_2, \cdots, e_m\}$ and colored map $\lambda : \mathcal{E} \longrightarrow (\mathbb{Z}_2)^k$ where $\lambda(e_i), \lambda(e_j)$ are linearly independent for $e_i \cap e_j \neq \varnothing$. Then

$$H_1(P_{\lambda}) = L(h_1, h_2, \dots, h_m) / L(\{R_v \mid v \in (\mathbb{Z}_2)^k - \{0\}\})$$

where
$$h_i = e_i + e'_i$$
, $R_v = \sum_{\lambda(e_i) \neq v} h_i$ for $v \in (\mathbb{Z}_2)^k - \{0\}$.

Theorem

Let P_{λ} be a colored m-gon with edge set $\mathcal{E} = \{e_1, e_2, \cdots, e_m\}$ and colored map $\lambda : \mathcal{E} \longrightarrow (\mathbb{Z}_2)^k$ where $\lambda(e_i), \lambda(e_j)$ are linearly independent for $e_i \cap e_j \neq \varnothing$. Then

$$H_1(P_{\lambda}) = L(h_1, h_2, \dots, h_m) / L(\{R_v \mid v \in (\mathbb{Z}_2)^k - \{0\}\})$$

where $h_i = e_i + e_i'$, $R_v = \sum_{\lambda(e_i) \neq v} h_i$ for $v \in (\mathbb{Z}_2)^k - \{0\}$.

Corollary

Let P_{λ} be a colored m-gon with edge set $\mathcal{E} = \{e_1, e_2, \cdots, e_m\}$ and colored map $\lambda : \mathcal{E} \longrightarrow (\mathbb{Z}_2)^2$ where $\lambda(e_i), \lambda(e_j)$ are linearly independent for $e_i \cap e_j \neq \varnothing$. Then

$$H_1(P_{\lambda}) = L(h_1, h_2, \cdots, h_m)/L(R_1, R_2)$$

where $h_i = e_i + e_i'$, $R_1 = \sum_{\lambda(e_i) \neq (1,0)} h_i$, $R_2 = \sum_{\lambda(e_i) \neq (0,1)} h_i$.

Colored homology of colored polytope and \mathbb{Z}_2 -homology of small cover

Proposition

Let P_{λ} be an n-dimensional colored polytope satisfying that $V = (\mathbb{Z}_2)^n$ and that the colors $\{\lambda(F_i) \mid f \in F_i\}$ for each face $f = F_1 \cap F_2 \cap \cdots \cap F_k$ of P are linear independent. Then P_{λ} determines a small cover M. Moreover,

$$H_i(M; \mathbb{Z}_2) = H_i(P_\lambda).$$

The i-th betti number of P_{λ} equals to h_i , where h_i is the h-vector of the dual complex of simple polytope P.

Colored homology of colored polytope and \mathbb{Z}_2 -homology of small cover

Proposition

Let P_{λ} be an n-dimensional colored polytope satisfying that $V = (\mathbb{Z}_2)^n$ and that the colors $\{\lambda(F_i) \mid f \in F_i\}$ for each face $f = F_1 \cap F_2 \cap \cdots \cap F_k$ of P are linear independent. Then P_{λ} determines a small cover M. Moreover,

$$H_i(M; \mathbb{Z}_2) = H_i(P_\lambda).$$

The i-th betti number of P_{λ} equals to h_i , where h_i is the h-vector of the dual complex of simple polytope P.

Remark

Let P_{λ} be an n-dimensional colored polytope satisfying that $V = (\mathbb{Z}_2)^k$ and that the colors $\{\lambda(F_i) \mid f \in F_i\}$ for each face $f = F_1 \cap F_2 \cap \cdots \cap F_k$ of P are linear independent. Then P_{λ} determines a closed n-manifold N. In general, $H_i(P_{\lambda})$ is not isomorphic to $H_i(N; \mathbb{Z}_2)$.

Colored graph

• A graph $G = \{V, \mathcal{E}\}$ is called a *colored graph* if there is a colored map on edge set \mathcal{E} ,

$$\lambda: \mathcal{E} \longrightarrow V$$

where V is a \mathbb{Z}_2 -module. Colored graph is denoted as G_{λ} .

Colored graph

• A graph $G = \{V, \mathcal{E}\}$ is called a *colored graph* if there is a colored map on edge set \mathcal{E} ,

$$\lambda: \mathcal{E} \longrightarrow V$$

where V is a \mathbb{Z}_2 -module. Colored graph is denoted as G_{λ} .

• If there is a map $\lambda: \mathcal{V} \longrightarrow V$ on vertex set of $G = \{\mathcal{V}, \mathcal{E}\}$, then the dual of G is a colored graph.

• The chain groups are defined as follows:

$$C_{i} = \begin{cases} (\mathbb{Z}_{2})^{|\mathcal{V}|}, & i = 0, \\ \bigoplus_{e \in \mathcal{E}} V_{e}, & i = 1, \\ \bigoplus_{l \in \mathcal{L}} V_{l}, & i = 2, \\ 0, & otherwise, \end{cases}$$

```
where C_0 is generated by vertices of G_\lambda, the generators of C_1 contains two types, \begin{cases} \text{ for } \lambda(e) \neq 0 \text{ the generator is edge } e \text{ and its copy } e', \ V_e = (\mathbb{Z}_2)^2, \\ \text{ for } \lambda(e) = 0 \text{ the generator is edge } e, \ V_e = \mathbb{Z}_2, \\ \mathcal{L} \text{ is the set of loops in } G_\lambda \text{ and } V_I \text{ is generated by } \\ \{\lambda(e) \mid e \subset I\}. \end{cases}
```

• For any generator $e \in C_1$,

$$d_1(e)=v_1+v_2,$$

where v_1, v_2 is the vertices of e.

• For any generator $e \in C_1$,

$$d_1(e)=v_1+v_2,$$

where v_1, v_2 is the vertices of e.

• For any $[I, h] \in C_2$,

$$d_2([I,h]) = \sum_{e_i \subset I, \lambda(e_i) = h} e_i + \sum_{e_i \subset I, \lambda(e_i) \notin \{0,h\}} e_i'.$$

• For any generator $e \in C_1$,

$$d_1(e)=v_1+v_2,$$

where v_1, v_2 is the vertices of e.

• For any $[l, h] \in C_2$,

$$d_2([\mathit{I},\mathit{h}]) = \sum_{e_i \subset \mathit{I},\lambda(e_i) = \mathit{h}} e_i + \sum_{e_i \subset \mathit{I},\lambda(e_i) \notin \{0,\mathit{h}\}} e_i'.$$

• The difference with d_2 in colored homology of colored polytope is the definition of $d_2([I,0])$.

$$\begin{cases} \text{Colored polytope: } d_2([l,0]) = \sum_{e_i \subset l} e_i; \\ \text{Colored graph: } d_2([l,0]) = \sum_{e_i \subset l, \lambda(e_i) = 0} e_i + \sum_{e_i \subset l, \lambda(e_i) \neq 0} e'_i. \end{cases}$$

•
$$d_1 \circ d_2 = 0$$
.

- $d_1 \circ d_2 = 0$.
- $H_1(G_{\lambda}; \mathbb{Z}_2) = \ker d_1/\operatorname{im} d_2$ is called the (1-st) colored homology group of colored graph G_{λ} , abbreviated as $H_1(G_{\lambda})$.

Theorem

Let P_{λ} be a colored loop with edge set $\mathcal{E} = \{e_1, e_2, \cdots, e_m\}$ and colored map $\lambda : \mathcal{E} \longrightarrow (\mathbb{Z}_2)^k$ where $\lambda(e_i), \lambda(e_j)$ are linearly independent for $e_i \cap e_j \neq \varnothing$. Then

$$H_1(P_{\lambda}) = L(h_1, h_2, \cdots, h_m)/L(\{R_v \mid v \in (\mathbb{Z}_2)^k - \{0\}\})$$

where $h_i = e_i + e_i', R_v = \sum_{\lambda(e_i)=v} h_i$ for $v \in (\mathbb{Z}_2)^k - \{0\}$.

Corollary

Let P_{λ} be a colored loop with edge set $\mathcal{E} = \{e_1, e_2, \cdots, e_m\}$ and colored map $\lambda : \mathcal{E} \longrightarrow (\mathbb{Z}_2)^2$ where $\lambda(e_i), \lambda(e_j)$ are linearly independent for $e_i \cap e_j \neq \emptyset$. Then

$$H_1(P_{\lambda}) = L(h_1, h_2, \cdots, h_m)/L(R_1, R_2, R_3)$$

where $h_i = e_i + e'_i$, $R_1 = \sum_{\lambda(e_i)=(1,0)} h_i$, $R_2 = \sum_{\lambda(e_i)=(0,1)} h_i$, $R_3 = \sum_{\lambda(e_i)=(1,1)} h_i$.

Example

Let P_{λ} be a colored triangle.

- Weighted homology of dual complex $H_1^{wt}(K_P^w) \cong (\mathbb{Z}_2)^3$.
- st-homology $H_1^{st}(P_\lambda) \cong (\mathbb{Z}_2)^3$.
- Colored homology of colored triangle $H_1^{c1}(P_\lambda) \cong \mathbb{Z}_2$.
- Colored homology of colored loop $H_1^{c2}(P_\lambda)=0$.

Persistent colored homology

• Let G_{λ}^{w} be a weighted colored graph where graph $G = \{\mathcal{V}, \mathcal{E}\}$, colored map $\lambda : \mathcal{E} \longrightarrow V$ and weighted map $w : \mathcal{E} \longrightarrow \mathbb{R}$.

Persistent colored homology

- Let G_{λ}^{w} be a weighted colored graph where graph $G = \{\mathcal{V}, \mathcal{E}\}$, colored map $\lambda : \mathcal{E} \longrightarrow V$ and weighted map $w : \mathcal{E} \longrightarrow \mathbb{R}$.
- Fixed $d \ge 0$, let

$$\mathcal{E}(d) = \{e \mid w(e) \le d, e \in \mathcal{E}\}$$
$$\lambda(d) = \lambda|_{\mathcal{E}(d)}.$$

Then $G_{\lambda}(d)$ with edge set $\mathcal{E}(d)$ is a colored subgraph of G_{λ} .

Persistent colored homology

- Let G_{λ}^{w} be a weighted colored graph where graph $G = \{\mathcal{V}, \mathcal{E}\}$, colored map $\lambda : \mathcal{E} \longrightarrow V$ and weighted map $w : \mathcal{E} \longrightarrow \mathbb{R}$.
- Fixed $d \ge 0$, let

$$\mathcal{E}(d) = \{e \mid w(e) \le d, e \in \mathcal{E}\}$$
$$\lambda(d) = \lambda|_{\mathcal{E}(d)}.$$

Then $G_{\lambda}(d)$ with edge set $\mathcal{E}(d)$ is a colored subgraph of G_{λ} .

• Making d change from 0 to ∞ , the colored homology groups $\{H_1(G_{\lambda}(d)) \mid d \geq 0\}$ are called *persistent colored homology groups (PCH)* of weighted colored graph of G_{λ}^w .

Three adenine (A), EA, and ϵ A

Figure: Structures of adenine (A), EA, and ϵA

Chemicalbond	Bondlength/ (10^{-12}m)	Bondenergy/(KJ/mol)
CC	154	332
C==C	134	611
С——Н	109	414
CN	148	305
C===N	135	615
NH	101	389

Colored map and weighted map

• The color of each bond.

Colored map and weighted map

The color of each bond.

• The weight of each bond $e \in \mathcal{E}$ can be take bond length or bond energy of e.

Colored map and weighted map

The color of each bond.

- The weight of each bond $e \in \mathcal{E}$ can be take bond length or bond energy of e.
- All three adenines (A), EA, and ϵ A can be modelled by weighted colored graph.

Calculation results—base on bond length

Figure: PCH of adenine (A)

Calculation results—base on bond length

Figure: PCH of adenine EA

Calculation results—base on bond length

Figure: PCH of adenine ϵA

Calculation results—base on bond energy

Figure: PCH of adenine (A)

Calculation results—base on bond energy

Figure: PCH of adenine EA

Calculation results—base on bond energy

Figure: PCH of adenine ϵA

• Let I be a loop in graph G, $v_1, v_2, \cdots, v_{n+1}$ be the ordered vertices of I where $v_1 = v_{n+1}$. If there are two vertices v_i, v_j connected by a path p where p and I have no common edge, then I can be split into two loops I_1, I_2 which have common p. Specially, if there are two nonadjacent vertices v_i, v_j of I are the same vertex, then I can also be split into two loops I_1, I_2 which have common vertex $v_i = v_j$.

• The loop l with ordered vertices $\{v_1, v_2, v_1\}$ and one edge is called a *trivial loop*. Moreover, a loop which can be split into trivial loops is also called a *trivial loop*.

Figure: Trivial loop $v_1 v_2 \cdots v_6 v_7 v_6 \cdots v_2 v_1$

• The loop l with ordered vertices $\{v_1, v_2, v_1\}$ and one edge is called a *trivial loop*. Moreover, a loop which can be split into trivial loops is also called a *trivial loop*.

Figure: Trivial loop $v_1v_2 \cdots v_6v_7v_6 \cdots v_2v_1$

• Let M be a maximum spanning tree of graph G. Then adding an arbitrary edge $e \notin M$ on M will create a loop l_e . The loops $\mathcal{L}_b = \{l_e \mid e \notin M\}$ are called a *loop basis* of graph G, $l_e \in \mathcal{L}_b$ is called a *basis loop*.

• Any loop I of G can be split into basis loops in \mathcal{L}_b and trivial loops.

• If loop I can be split into two loops I_1 , I_2 , then for $[I, h] \in C_2 = \bigoplus_{I \in \mathcal{L}} V_I$,

$$d_2([I,h]) = d_2([I_1,h]) + d_2([I_2,h]).$$

• If loop I can be split into two loops I_1 , I_2 , then for $[I, h] \in C_2 = \bigoplus_{I \in \mathcal{L}} V_I$,

$$d_2([I,h]) = d_2([I_1,h]) + d_2([I_2,h]).$$

• If I is a trivial loop in G, then for $[I,h] \in C_2 = \bigoplus_{I \in \mathcal{L}} V_I$,

$$d_2([I,h])=0.$$

• If loop I can be split into two loops I_1 , I_2 , then for $[I, h] \in C_2 = \bigoplus_{I \in \mathcal{L}} V_I$,

$$d_2([I,h]) = d_2([I_1,h]) + d_2([I_2,h]).$$

• If I is a trivial loop in G, then for $[I,h] \in C_2 = \bigoplus_{I \in \mathcal{L}} V_I$,

$$d_2([I,h])=0.$$

• If loop I can be split into two loops I_1, I_2 , then for $[I, h] \in C_2 = \bigoplus_{I \in \mathcal{L}} V_I$,

$$d_2([I, h]) = d_2([I_1, h]) + d_2([I_2, h]).$$

• If I is a trivial loop in G, then for $[I,h] \in C_2 = \bigoplus_{I \in \mathcal{L}} V_I$,

$$d_2([I,h])=0.$$

Proposition

Let
$$C_2 = \bigoplus_{l \in \mathcal{L}_b} V_l$$
, $d_2' = d_2 \mid_{C_2'}$. Then $C_2 \subset C_2$,

im
$$d_2' = im d_2$$
.

• If loop I can be split into two loops I_1 , I_2 , then for $[I, h] \in C_2 = \bigoplus_{I \in \mathcal{L}} V_I$,

$$d_2([I, h]) = d_2([I_1, h]) + d_2([I_2, h]).$$

• If I is a trivial loop in G, then for $[I,h] \in C_2 = \bigoplus_{I \in \mathcal{L}} V_I$,

$$d_2([l,h])=0.$$

Proposition

Let
$$C_2'=\oplus_{I\in\mathcal{L}_b}V_I$$
, $d_2'=d_2\mid_{C_2'}$. Then $C_2'\subset C_2$,

$$im d'_2 = im d_2.$$

• The loops set \mathcal{L} of G_{λ} in the chain complex $X = \{C_i, d_i\}$ of colored graph G_{λ} can be replaced by loop basis \mathcal{L}_b .

Thanks for your attention!

Workshop on Toric Topology 2024 in Shanghai

August 13-14, 2024