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Small cover

@ An n-dimensional small cover is a closed n-manifold M with a
locally standard Z3-action whose orbit space is a simple
n-polytope P.

T M— P

@ The Z3-action on M determines a characteristic map A on the
set of facets of P

A:]:é{FLF%""Fm}—)Zg

such that
Vi=FNFkN---NF,
G 2 LR, AR, -, A(F)) = (Zo). ()



Colored polytope

@ Simple n-polytope P and characteristic map \ determine a
small cover

M=PxZ5]~

where (p, g) ~ (g, h) iff p=q, g7'h € Gg,), and f(p) is the
unique face of P that contains p in its relative interior,
Gf(p) = {1} if pe P°.
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Colored polytope

@ Simple n-polytope P and characteristic map \ determine a

small cover
M=PxZ5] ~

where (p,g) ~ (q,h) iff p=gq, g thec Gfp), and f(p) is the
unique face of P that contains p in its relative interior,
Gf(p) ={1}if pe P°.

@ In general, simple n-polytope P and characteristic map
A F — 7K satisfying condition (x) determine a closed
n-manifold in the same way.

N=PxZ5 ~

@ Colored polytope Py:=simple n-polytope P + characteristic map .
(Condition (%) is not essential.)

@ The characteristic map A is called a colored map,
A(F) is called a color on facet F.



Homology of colored polytope

@ Weighted homology.
Py : colored polytope; K: dual complex of Pj.
Each simplex of € K endowing with weight w(of) = |G.
ofrC op < fcf= GrC G = |Gf| ’Gf”

Hence K is a weighted complex.
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Homology of colored polytope

@ Weighted homology.
Py : colored polytope; K: dual complex of Pj.
Each simplex of € K endowing with weight w(of) = |G.
ofrC op < fcf= GrC G = |Gf| ’Gf”

Hence K is a weighted complex. Weighted boundary operator

d‘,/.,Vt((J') _ Z W(O'.) . (—].)i&,'.

i=0
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Homology of colored polytope

e Stratified simplicial homology (st-homology).
P, : colored polytope; K: a triangulation adapted to P.

H'(K) = H" (K, ZK)

(1,0) (0,1)

(1,1)
Colored polytope Triangulation



Faces of colored polytope

@ Any face of a colored polytope is colored.
Let Py be a colored polytope, f be a face of P,.
There is an exact sequence

0— Wf—i> Vpi> Vp/Wf—> 0,

where Wr= L({\(F) | fC Fe F}), Vp=L({\(F)| Fe F}).
Then there is an induced colored map

Aeo Fr— Vp/ We

such that Ads) = g o A(Fs) for facet s= fN Fs of f.
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Colored polyhedral complex

@ A polyhedral complex is a finite set of simple polytopes such
that the intersection between the polytopes is either empty or
is a face of each of them.

@ A polyhedral complex K'is called a colored polyhedral

complex, if there is a colored map A\s: Fr — Vy for each face
fe K, such that

e For any colored polytopes P;, P, containing f as a common
face, the induced colored maps are the same and equal to Ar.

@ A colored polytope is a colored polyhedral complex.



Colored homology of colored polyhedral complex

@ i-th chain groups
oo (Zz)\fo\ ’ i=0,
I @fe]:;vﬁ ’Z ]-7

where F; is the i-face set of K}, any face f € Fj is a colored
polytope, Vris the module generated by the image of Ax



Colored homology of colored polyhedral complex

@ i-th chain groups

G = {(Zz)'ﬁ, i=0,

Prer Ve 21,

where F; is the i-face set of K}, any face f € F; is a colored
polytope, Vris the module generated by the image of A\«

@ Define boundary map d;: G — Cj_1 via
a1 v1) = 35 a(v)]
sCf

where s € Fris a facet of f, and g is the quotient map in
exact sequence

0— W, -5 Vi -4 v/, —s 0.



Colored homology of colored polyhedral complex

("] d,'O d;+1 =0.



Colored homology of colored polyhedral complex

(] d,' o d,'_;,_l =0.
o Hi(Ky;Zy) = kerd;/im di;1 is called the i-th colored

homology group of colored polyhedral complex K,
abbreviated as H;(K)).



Theorem

Let Py be a colored m-gon with edge set £ = {e1, €, -+ ,em} and
colored map X : € — (Zy)* where \(e;), A(e;) are linearly
independent for e;N e; # &. Then

HL(Py) = L(h1, ho, -+ h) [L({R | v € (Z2)* — {0}})

where h; = e; + ef-, R, = Z/\(e,-);évhf forve (Z2)k —{0}.



Theorem

Let Py be a colored m-gon with edge set £ = {e1, €, -+ ,em} and
colored map X : € — (Zy)* where \(e;), A(e;) are linearly
independent for e;N e; # &. Then

Hi(Py) = L(h1, ha, -+ hm) /LH{Ry | v € (Z2)* — {0}})
where hj = ei+ €, R, = Z/\(ei)?ﬁvh,- for v € (Zy)* — {0}.

Corollary

Let Py be a colored m-gon with edge set £ = {e1, e, -+ ,em} and
colored map X : € — (Z»)? where \(e;), A(e;) are linearly
independent for e;N ej # &. Then

Hl(PA) = L(h17h2v T ’hm)/L(Rlv R2)

where h,' =&+ e:-, R]_ Z)\ )#£(1,0) h,, R2 ZA(ei)¢(071) h,‘.



Colored homology of colored polytope and Zj-homology of small cover

Proposition

Let Py be an n-dimensional colored polytope satisfying that
V = (Zy)" and that the colors {\(F;) | f € F;} for each face
f=F NFN---NFg of P are linear independent. Then P,
determines a small cover M. Moreover,

Hi{(M; Zy) = H{(Py).

The i-th betti number of Py equals to h;, where h; is the h-vector
of the dual complex of simple polytope P.

10



Colored homology of colored polytope and Zj-homology of small cover

Proposition

Let Py be an n-dimensional colored polytope satisfying that
V = (Zy)" and that the colors {\(F;) | f € F;} for each face
f=F NFN---NFg of P are linear independent. Then P,
determines a small cover M. Moreover,

Hi{(M; Zy) = H{(Py).

The i-th betti number of Py equals to h;, where h; is the h-vector
of the dual complex of simple polytope P.

Remark

Let Py be an n-dimensional colored polytope satisfying that

V = (Z,)¥ and that the colors {\(F;) | f€ F;} for each face

f=F NFN---NFgof P are linear independent. Then P,
determines a closed n-manifold N. In general, H;(P,) is not
isomorphic to Hi(N; Z5). 10



Colored graph

e A graph G={V,&} is called a colored graph if there is a
colored map on edge set &,

AN:E—V

where V'is a Zp-module. Colored graph is denoted as Gj.
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Colored graph

e A graph G={V,&} is called a colored graph if there is a
colored map on edge set &,

AN:E—V

where V'is a Zp-module. Colored graph is denoted as Gj.

o If there is a map A : V — V on vertex set of G = {V, £},
then the dual of G is a colored graph.

11



Homology groups of colored graph

@ The chain groups are defined as follows:

(Z)M, =0,
DPece Ve: = 17
DPrec V/7 = 27

0, otherwise,

where ( is generated by vertices of Gy,

the generators of C; contains two types,
for A(e) # 0 the generator is edge e and its copy €, Ve = (Z,)?,
for A(e) = 0 the generator is edge e, Ve = Zy,

L is the set of loops in Gy and V] is generated by

{\e) | ecC [}

12



Homology groups of colored graph

e For any generator e € Cy,
d1(e) = vi + vo,

where vyq, v» is the vertices of e.

13



Homology groups of colored graph

@ For any generator e € Cq,
d1(e) = vi + vo,

where vyq, v» is the vertices of e.
e For any [/, h] € G,

do([1, h]) = Z & + Z €.

eiClLA(e))=h eiClL\(e)¢{0,h}
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Homology groups of colored graph

@ For any generator e € Cq,
d1(e) = vi + vo,

where vyq, v» is the vertices of e.
e For any [/, h] € G,

b(a)= > e+ > €.
eiClA\(e))=h eiCl\(e)¢{0,h}

@ The difference with d> in colored homology of colored
polytope is the definition of da([/,0]).
Colored polytope: da([/,0]) = > .. e€i
Colored graph: do([/,0]) = >- oy x(e)=0 & T 2eicin(e) 0 €

13



Homology groups of colored graph

0d10d2:0.

14



Homology groups of colored graph

@ diod, =0.

@ Hi(Gx;Zo) = kerdy/im ds is called the (1-st) colored
homology group of colored graph G), abbreviated as Hi(G)).

14



Homology groups of colored graph

Theorem
Let Py be a colored loop with edge set &€ = {e1, e, ,em} and
colored map X : € — (Zy)* where X(e;), A(e;) are linearly
independent for e; N ej # &. Then

Hi(Py) = L(hy, b, -+ hm) /L{Ry | v € (Z2)* = {0}})
where hj = ei + €, R, = > A(e)=v hi for v e (Z2)k — {0}.

Corollary

Let Py be a colored loop with edge set £ = {e1, e, - ,em} and
colored map X : €& — (Z2)? where \(e;), M(e;j) are linearly
independent for e;N e; # &. Then

Hl(P,\) = L(h1,ho,-- ,hm)/L(R1, R2, R3)

where h,' = e+ e Z)\(e) (1,0) h/, R2 = Z)\(e (0,1) hn R3 -
2 A(e)=(1,1) hi- 15



Example

N
N N

N
IS

Let Py be a colored triangle.
Weighted homology of dual complex HY{(K%) = (Z,)3.
st-homology H5!(Py) = (Z2)3.

Colored homology of colored triangle HS(Py) & Z,.
Colored homology of colored loop H$?(Py) = 0.

D

&

16



Persistent colored homology

@ Let GY be a weighted colored graph where graph G = {V,£},
colored map A : £ — V and weighted map w: & — R.

17



Persistent colored homology

o Let GY be a weighted colored graph where graph G = {V, £},
colored map A : £ — V and weighted map w: £ — R.

@ Fixed d >0, let
E(d)={e|w(e) < dec&}

A(d) = Ale(a)-
Then G)(d) with edge set £(d) is a colored subgraph of G,.
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Persistent colored homology

o Let GY be a weighted colored graph where graph G = {V, £},
colored map A : £ — V and weighted map w: £ — R.

@ Fixed d >0, let
E(d)={e|w(e) < dec&}

A(d) = Alg(a)-
Then G)(d) with edge set £(d) is a colored subgraph of G,.

@ Making d change from 0 to oo, the colored homology groups
{H1(GA(d)) | d > 0} are called persistent colored homology
groups (PCH) of weighted colored graph of GY.

17



Three adenine (A), EA, and €A

NH, ) N \
</N | XN {NIQD /N:Ei}
/ '\2 / N) <N m%
DNA DNA D/NA

A EA €A
Figure: Structures of adenine (A), EA, and €A
Chemicalbond Bondlength/(107*?m) Bondenergy/(KJ/mol)

c—C 154 332
C=C 134 611
C—H 109 414
C—N 148 305
C=N 135 615




Colored map and weighted map

@ The color of each bond.
A& — (Z2)6,

1,0,0,0,0,0
0,1,0,0,0,0

( ), if e is bond C—C,
( ), if eis bond C==C,
(0,0,1,0,0,0), if eis bond C—H,
(0,0,0,1,0,0), if eis bond C—N,
( ) if e is bond N==N,
( );

if eis bond N—H.

0,0,0,0,1,0
0,0,0,0,0,1

’

19



Colored map and weighted map

@ The color of each bond.

A€ — (Z2)6,
(1,0,0,0,0,0),  if eis bond C—=C,
(0,1,0,0,0,0), if eis bond C=—=C,
Ae) = (0,0,1,0,0,0), if e is bond C—H,
(0,0,0,1,0,0), if e is bond C—N,
(0,0,0,0,1,0), if e is bond N—=N,
(0,0,0,0,0,1), if eis bond N—H.

\

@ The weight of each bond e € £ can be take bond length or
bond energy of e.

19



Colored map and weighted map

@ The color of each bond.

A€ — (Z2)6,
(1,0,0,0,0,0),  if eis bond C—=C,
(0,1,0,0,0,0), if eis bond C=—=C,
Ae) = (0,0,1,0,0,0), if e is bond C—H,
(0,0,0,1,0,0), if e is bond C—N,
(0,0,0,0,1,0), if e is bond N—=N,
(0,0,0,0,0,1), if eis bond N—H.

\

@ The weight of each bond e € £ can be take bond length or
bond energy of e.

@ All three adenines (A), EA, and €A can be modelled by

weighted colored graph.
19



Calculation results—base on bond length

", % N\ %
. . . .. ' o . . ‘. . . . \ o . \

NH,

A LSRN LSS e

DNA(C)
Bondlength
m— N—H
m— C—H
C=——=C
= &3 E
= C—C —

Figure: PCH of adenine (A) 20



Calculation results—base on bond length

> s 1~
. - ° . * = -
— |
CHH oy
y\ % o) Bondlength
:%ﬂ =

Figure: PCH of adenine EA 21



Calculation results—base on bond length

T LD
AL RCE @Q

DNA

Bondlength

(if

Figure: PCH of adenine €A 22



Calculation results—base on bond energy

;11 \;il y{ !
D I A
L e

Figure: PCH of adenine (A) 23



Calculation results—base on bond energy
I s

i ol

Bondenergy

-\{
/

Figure: PCH of adenine EA 24



Calculation results—base on bond energy

e

SN ea e
— — ) @
s Ry

Bondenergy

Ficure: PCH of adenine €A 25



Computation of homology groups of colored graph

26



Computation of homology groups of colored graph

@ Let / be a loop in graph G, vi,va, -, Vy1 be the ordered
vertices of / where vi = v, y1. If there are two vertices v;, v;
connected by a path p where p and / have no common edge,
then / can be split into two loops /1, /» which have common p.
Specially, if there are two nonadjacent vertices v;, v; of | are
the same vertex, then / can also be split into two loops /1,
which have common vertex v; = v;.



Computation of homology groups of colored graph

@ The loop / with ordered vertices {v1, v, v1 } and one edge is
called a trivial loop. Moreover, a loop which can be split into
trivial loops is also called a trivial loop.

V2 V4 Ve

VA VAN

Vi V3 Vs v7

Figure: Trivial loop vivo -+ - vgvrvg - - - vovg

28



Computation of homology groups of colored graph

@ The loop / with ordered vertices {v1, v, v1 } and one edge is
called a trivial loop. Moreover, a loop which can be split into
trivial loops is also called a trivial loop.

V2 V4 Ve

VA VAN

Vi V3 Vs v7

Figure: Trivial loop vivo -+ - vgvrvg - - - vovg

@ Let M be a maximum spanning tree of graph G. Then adding
an arbitrary edge e ¢ M on M will create a loop /.. The loops
Ly={le| e¢ M} are called a loop basis of graph G, l. € L}
is called a basis loop.

28



Computation of homology groups of colored graph

@ Any loop / of G can be split into basis loops in L, and trivial
Ioops.

" &y e

BGI\/I

@@@@@&

Loop basis of G

R AT

29



Computation of homology groups of colored graph

@ If loop / can be split into two loops /1, k, then for
[l.h] € o = @iecVi,

do([1, h]) = da([h, h]) + do([h; h]).

30



Computation of homology groups of colored graph

@ If loop / can be split into two loops /1, k, then for
[l.h] € o = @iecVi,

da([l; ) = do([h, h) + d2([l2, H]).
e If /s a trivial loop in G, then for [, h] € C; = B V),

d2([l7 h]) =0.

30



Computation of homology groups of colored graph

@ If loop / can be split into two loops /1, k, then for
[l.h] € o = @iecVi,

da([l; ) = do([h, h) + d2([l2, H]).
e If /s a trivial loop in G, then for [, h] € C; = B V),

d2([l7 h]) =0.
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Computation of homology groups of colored graph

@ If loop / can be split into two loops /1, k, then for
[l.h] € o = @iecVi,

da([l; ) = do([h, h) + d2([l2, H]).
e If /s a trivial loop in G, then for [, h] € C; = B V),

d2([l7 h]) =0.

Proposition
Let C,2 = @/egb\//, d’2 =d |C/2 Then C/2 C G,

im d, = im ds.

30



Computation of homology groups of colored graph

@ If loop / can be split into two loops /1, k, then for
[l.h] € o = @iecVi,

da([1; h) = da([h, h]) + da([k2, h).-
e If /s a trivial loop in G, then for [, h] € C; = B V),
da([1, h]) = 0.
Proposition
Let C, = e, Vi, o) = oo |C/2. Then C, C G,
im d, = im ds.
@ The loops set £ of Gy in the chain complex X = {(;, d;} of

colored graph G, can be replaced by loop basis Lp.
30



Thanks for your attention!
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