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Small cover

An n-dimensional small cover is a closed n-manifold M with a
locally standard Zn

2-action whose orbit space is a simple
n-polytope P.

π : M −→ P

The Zn
2-action on M determines a characteristic map λ on the

set of facets of P

λ : F ∆
= {F1,F2, · · · ,Fm} −→ Zn

2

such that
∀ f = F1 ∩ F2 ∩ · · · ∩ Fi,
Gf

∆
= L(λ(F1), λ(F2), · · · , λ(Fi)) ∼= (Z2)i. (⋆)
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Colored polytope

Simple n-polytope P and characteristic map λ determine a
small cover

M = P × Zn
2/ ∼

where (p, g) ∼ (q, h) iff p = q, g−1h ∈ Gf(p), and f (p) is the
unique face of P that contains p in its relative interior,
Gf(p) = {1} if p ∈ P ◦.

In general, simple n-polytope P and characteristic map
λ : F −→ Zk

2 satisfying condition (⋆) determine a closed
n-manifold in the same way.

N = P × Zk
2/ ∼

Colored polytope Pλ:=simple n-polytope P + characteristic map λ.
(Condition (⋆) is not essential.)
The characteristic map λ is called a colored map,
λ(F) is called a color on facet F.
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Homology of colored polytope

Weighted homology.
Pλ : colored polytope; K: dual complex of Pλ.
Each simplex σf ∈ K endowing with weight w(σf) = |Gf|.

σf ⊂ σf′ ⇔ f′ ⊂ f ⇒ Gf ⊂ Gf′ ⇒ |Gf|
∣∣∣|Gf′ |

Hence K is a weighted complex.

Weighted boundary operator

dwt
n (σ) =

n∑
i=0

w(σ)
w(σ̂i)

· (−1)iσ̂i.

(0, 1) (1, 0)

(1, 1)

2

2

2 4

4 4

colored polytope weighted complex 3
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Homology of colored polytope

Stratified simplicial homology (st-homology).
Pλ : colored polytope; K: a triangulation adapted to Pλ.

Hst
i (K) = Hwt

i (K,ΣK)

(1, 0) (0, 1)

(1, 1)
Colored polytope Triangulation
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Faces of colored polytope

Any face of a colored polytope is colored.
Let Pλ be a colored polytope, f be a face of Pλ.
There is an exact sequence

0 −→ Wf
i−→ VP

q−→ VP/Wf −→ 0,

where Wf = L({λ(F) | f ⊂ F ∈ F}), VP = L({λ(F) | F ∈ F}).
Then there is an induced colored map

λf : Ff −→ VP/Wf

such that λf(s) = q ◦ λ(Fs) for facet s = f ∩ Fs of f.
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Colored polyhedral complex

A polyhedral complex is a finite set of simple polytopes such
that the intersection between the polytopes is either empty or
is a face of each of them.

A polyhedral complex K is called a colored polyhedral
complex, if there is a colored map λf : Ff −→ Vf for each face
f ∈ K, such that

For any colored polytopes P1,P2 containing f as a common
face, the induced colored maps are the same and equal to λf.

A colored polytope is a colored polyhedral complex.
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Colored homology of colored polyhedral complex

i-th chain groups

Ci =

{
(Z2)

|F0| , i = 0,
⊕f∈FiVf, i ≥ 1,

where Fi is the i-face set of Kλ, any face f ∈ Fi is a colored
polytope, Vf is the module generated by the image of λf.

Define boundary map di : Ci −→ Ci−1 via

di([f, v]) =
∑
s⊂f

[s, q(v)]

where s ∈ Ff is a facet of f, and q is the quotient map in
exact sequence

0 −→ Ws
i−→ Vf

q−→ V/Ws −→ 0.

7



Colored homology of colored polyhedral complex

i-th chain groups

Ci =

{
(Z2)

|F0| , i = 0,
⊕f∈FiVf, i ≥ 1,

where Fi is the i-face set of Kλ, any face f ∈ Fi is a colored
polytope, Vf is the module generated by the image of λf.
Define boundary map di : Ci −→ Ci−1 via

di([f, v]) =
∑
s⊂f

[s, q(v)]

where s ∈ Ff is a facet of f, and q is the quotient map in
exact sequence

0 −→ Ws
i−→ Vf

q−→ V/Ws −→ 0.

7



Colored homology of colored polyhedral complex

di ◦ di+1 = 0.

Hi(Kλ;Z2) = ker di/im di+1 is called the i-th colored
homology group of colored polyhedral complex Kλ,
abbreviated as Hi(Kλ).
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Theorem
Let Pλ be a colored m-gon with edge set E = {e1, e2, · · · , em} and
colored map λ : E −→ (Z2)k where λ(ei), λ(ej) are linearly
independent for ei ∩ ej ̸= ∅. Then

H1(Pλ) = L(h1, h2, · · · , hm)/L({Rv | v ∈ (Z2)
k − {0}})

where hi = ei + e′i,Rv =
∑

λ(ei) ̸=v hi for v ∈ (Z2)k − {0}.

Corollary
Let Pλ be a colored m-gon with edge set E = {e1, e2, · · · , em} and
colored map λ : E −→ (Z2)2 where λ(ei), λ(ej) are linearly
independent for ei ∩ ej ̸= ∅. Then

H1(Pλ) = L(h1, h2, · · · , hm)/L(R1,R2)

where hi = ei + e′i,R1 =
∑

λ(ei) ̸=(1,0) hi,R2 =
∑

λ(ei) ̸=(0,1) hi.
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Colored homology of colored polytope and Z2-homology of small cover

Proposition
Let Pλ be an n-dimensional colored polytope satisfying that
V = (Z2)n and that the colors {λ(Fi) | f ∈ Fi} for each face
f = F1 ∩ F2 ∩ · · · ∩ Fk of P are linear independent. Then Pλ

determines a small cover M. Moreover,

Hi(M;Z2) = Hi(Pλ).

The i-th betti number of Pλ equals to hi, where hi is the h-vector
of the dual complex of simple polytope P.

Remark
Let Pλ be an n-dimensional colored polytope satisfying that
V = (Z2)k and that the colors {λ(Fi) | f ∈ Fi} for each face
f = F1 ∩ F2 ∩ · · · ∩ Fk of P are linear independent. Then Pλ

determines a closed n-manifold N. In general, Hi(Pλ) is not
isomorphic to Hi(N;Z2).
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Colored graph

A graph G = {V, E} is called a colored graph if there is a
colored map on edge set E ,

λ : E −→ V

where V is a Z2-module. Colored graph is denoted as Gλ.

If there is a map λ : V −→ V on vertex set of G = {V, E},
then the dual of G is a colored graph.
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Homology groups of colored graph

The chain groups are defined as follows:

Ci =


(Z2)|V|, i = 0,
⊕e∈EVe, i = 1,
⊕l∈LVl, i = 2,
0, otherwise,

where C0 is generated by vertices of Gλ,
the generators of C1 contains two types,{

for λ(e) ̸= 0 the generator is edge e and its copy e′, Ve = (Z2)2,
for λ(e) = 0 the generator is edge e, Ve = Z2,

L is the set of loops in Gλ and Vl is generated by
{λ(e) | e ⊂ l}.
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Homology groups of colored graph

For any generator e ∈ C1,

d1(e) = v1 + v2,

where v1, v2 is the vertices of e.

For any [l, h] ∈ C2,

d2([l, h]) =
∑

ei⊂l,λ(ei)=h
ei +

∑
ei⊂l,λ(ei)/∈{0,h}

e′i.

The difference with d2 in colored homology of colored
polytope is the definition of d2([l, 0]).{

Colored polytope: d2([l, 0]) =
∑

ei⊂l ei;
Colored graph: d2([l, 0]) =

∑
ei⊂l,λ(ei)=0 ei +

∑
ei⊂l,λ(ei) ̸=0 e′i.
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Homology groups of colored graph

d1 ◦ d2 = 0.

H1(Gλ;Z2) = ker d1/im d2 is called the (1-st) colored
homology group of colored graph Gλ, abbreviated as H1(Gλ).
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Homology groups of colored graph

Theorem
Let Pλ be a colored loop with edge set E = {e1, e2, · · · , em} and
colored map λ : E −→ (Z2)k where λ(ei), λ(ej) are linearly
independent for ei ∩ ej ̸= ∅. Then

H1(Pλ) = L(h1, h2, · · · , hm)/L({Rv | v ∈ (Z2)
k − {0}})

where hi = ei + e′i,Rv =
∑

λ(ei)=v hi for v ∈ (Z2)k − {0}.

Corollary
Let Pλ be a colored loop with edge set E = {e1, e2, · · · , em} and
colored map λ : E −→ (Z2)2 where λ(ei), λ(ej) are linearly
independent for ei ∩ ej ̸= ∅. Then

H1(Pλ) = L(h1, h2, · · · , hm)/L(R1,R2,R3)

where hi = ei + e′i,R1 =
∑

λ(ei)=(1,0) hi,R2 =
∑

λ(ei)=(0,1) hi,R3 =∑
λ(ei)=(1,1) hi. 15



Example

(1, 0) (0, 1)

(1, 1)

2

22
4 4

4

e1
e3

e2
e′1 e′2

e′3
Let Pλ be a colored triangle.

Weighted homology of dual complex Hwt
1 (Kw

P)
∼= (Z2)3.

st-homology Hst
1 (Pλ) ∼= (Z2)3.

Colored homology of colored triangle Hc1
1 (Pλ) ∼= Z2.

Colored homology of colored loop Hc2
1 (Pλ) = 0. 16



Persistent colored homology

Let Gw
λ be a weighted colored graph where graph G = {V, E},

colored map λ : E −→ V and weighted map w : E −→ R.

Fixed d ≥ 0, let

E(d) = {e | w(e) ≤ d, e ∈ E}

λ(d) = λ|E(d).

Then Gλ(d) with edge set E(d) is a colored subgraph of Gλ.
Making d change from 0 to ∞, the colored homology groups
{H1(Gλ(d)) | d ≥ 0} are called persistent colored homology
groups (PCH) of weighted colored graph of Gw

λ .
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Three adenine (A), EA, and ϵA

N N

NN

N

N

N

NN

N

N N

N

N

NH2

DNA DNA DNAA EA ϵA
Figure: Structures of adenine (A), EA, and ϵA

Chemicalbond Bondlength/(10−12m) Bondenergy/(KJ/mol)
C—–C 154 332
C===C 134 611
C—–H 109 414
C—–N 148 305
C===N 135 615
N—–H 101 389

Table: Chemical bond length and bond energy
18



Colored map and weighted map

The color of each bond.

λ : E −→ (Z2)
6,

λ(e) =



(1, 0, 0, 0, 0, 0), if e is bond C—–C,
(0, 1, 0, 0, 0, 0), if e is bond C===C,
(0, 0, 1, 0, 0, 0), if e is bond C—–H,
(0, 0, 0, 1, 0, 0), if e is bond C—–N,
(0, 0, 0, 0, 1, 0), if e is bond N===N,
(0, 0, 0, 0, 0, 1), if e is bond N—–H.

The weight of each bond e ∈ E can be take bond length or
bond energy of e.
All three adenines (A), EA, and ϵA can be modelled by
weighted colored graph.
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Calculation results—base on bond length

N N

NN

NH2

DNA(C)

N—–H
C—–H
C====C
C====NC—–N
C—–C

Bondlength

Figure: PCH of adenine (A) 20



Calculation results—base on bond length

C—–HC====CC====NC—–NC—–C

Bondlength

N N

NN

DNA(C)

N

Figure: PCH of adenine EA 21



Calculation results—base on bond length

Bondlength

N N

NN

DNA(C)
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Calculation results—base on bond energy
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Computation of homology groups of colored graph
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Computation of homology groups of colored graph

Let l be a loop in graph G, v1, v2, · · · , vn+1 be the ordered
vertices of l where v1 = vn+1. If there are two vertices vi, vj
connected by a path p where p and l have no common edge,
then l can be split into two loops l1, l2 which have common p.
Specially, if there are two nonadjacent vertices vi, vj of l are
the same vertex, then l can also be split into two loops l1, l2
which have common vertex vi = vj.

l

l1 l2p

l1 l2
l

vi = vj

27



Computation of homology groups of colored graph

The loop l with ordered vertices {v1, v2, v1} and one edge is
called a trivial loop. Moreover, a loop which can be split into
trivial loops is also called a trivial loop.

v1

v2 v4 v6

v3 v5 v7

Figure: Trivial loop v1v2 · · · v6v7v6 · · · v2v1

Let M be a maximum spanning tree of graph G. Then adding
an arbitrary edge e /∈ M on M will create a loop le. The loops
Lb = {le | e /∈ M} are called a loop basis of graph G, le ∈ Lb
is called a basis loop.
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Computation of homology groups of colored graph

Any loop l of G can be split into basis loops in Lb and trivial
loops.

G M B = G − M

Loop basis of G

= + +

v5

v1

v2

v3

v4

l1 l2 l3 l4 l5 l6

l1 l2 l5l 29



Computation of homology groups of colored graph

If loop l can be split into two loops l1, l2, then for
[l, h] ∈ C2 = ⊕l∈LVl,

d2([l, h]) = d2([l1, h]) + d2([l2, h]).

If l is a trivial loop in G, then for [l, h] ∈ C2 = ⊕l∈LVl,

d2([l, h]) = 0.

Proposition
Let C′

2 = ⊕l∈LbVl, d′2 = d2 |C′
2
. Then C′

2 ⊂ C2,

im d′2 = im d2.

The loops set L of Gλ in the chain complex X = {Ci, di} of
colored graph Gλ can be replaced by loop basis Lb.
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Thanks for your attention!

Workshop on Toric Topology 2024 in Shanghai

August 13-14, 2024
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