《线性代数》第五章作业(6月18日提交)

临班 370

2023年6月21日

班级:	姓名:	学号:
		· · · · · · · · · · · · · · · · · · ·

(注意:本章所有矩阵都默认为实矩阵.)

- 1. 判断题: (全正确)
- (1) (相似不变量) 若矩阵 A,B 相似,则
 - ① 存在可逆矩阵 P, 使得 $P^{-1}AP = B$.
 - ② A, B 具有相同的阶次.
 - ③ R(A) = R(B), 从而 $A \sim B$.
 - ④ A, B 的特征多项式相等.
 - ⑤ A, B 的特征值相等.
 - ⑥ |A| = |B|. 进一步, A 可逆当且仅当 B 可逆.
- (2) 矩阵 A_n 可以相似对角化
- \Leftrightarrow 存在可逆矩阵 P, 使得 $P^{-1}AP$ 为对角矩阵.
- $\Leftrightarrow A \neq n$ 个线性无关的特征向量.
- ⇔ 每个特征值的代数重数和几何重数相等.
- ⇔ 极小多项式是一次因式的乘积.
- ⇐ 实对称矩阵以及和实对称相似的矩阵可相似对角化.
- \Leftarrow 具有 n 个互不相同特征值的矩阵可相似对角化.

- (3) (合同不变量) 若矩阵 A,B 是合同的,则
 - ① 存在可逆矩阵 P. 使得 $P^{T}AP = B$.
 - ② A, B 具有相同的阶次.
 - ③ R(A) = R(B), 从而 $A \sim B$.
 - ④ A, B 的正定性相同.
 - ⑤ A, B 行列式的符号相同.
 - ⑥ A 可逆当且仅当 B 可逆.
- (4) 矩阵 A 可以合同对角化
- \Leftrightarrow 存在可逆矩阵 P, 使得 P^TAP 为对角矩阵.
- $\Leftrightarrow A^T = A, A$ 为对称阵. 任意对称矩阵都可以合同对角化.
- (5) (正交相似不变量) 若矩阵 A, B 是正交相似的, 则
 - ① 存在正交矩阵 P, 使得 $P^{-1}AP = P^{T}AP = B$. 即是相似也是合同.
 - ② A, B 具有相同的阶次.
 - ③ R(A) = R(B), 从而 $A \sim B$.
 - ④ A, B 的特征多项式相等.
 - ⑤ A, B 的特征值相等.
 - ⑥ |A| = |B|. 进一步, A 可逆当且仅当 B 可逆.
- (6) 矩阵 A 可以正交相似对角化
- ⇔ 存在正交矩阵 P, 使得 $P^{T}AP = P^{-1}AP$ 为对角矩阵.
- $\Leftrightarrow A^T = A, A$ 为对称阵. 任意对称矩阵都可以正交相似对角化.

2. 计算题:

(1) 设
$$A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 计算:

①
$$\psi(A) = A^{10} - 5A^8 + 3E$$
.

② $|\psi(A)|$.

解: 先求可逆阵 P (或正交阵 P, 下面 $P^{-1} = P^T$ 计算更方便) 使得 $P^{-1}AP = \mathrm{diag}(-1,1,5) = \Lambda$,

则 $A = P \operatorname{diag}(-1, 1, 5) P^{-1}$.

 $\psi(A) = P \cdot \psi(\Lambda) \cdot P^{-1} = P \cdot \operatorname{diag}(\psi(-1), \psi(1), \psi(5)) \cdot P^{-1}.$

 $|\psi(A)| = \psi(-1)\psi(1)\psi(5).$

(2)
$$\ \mathcal{U} A = \begin{pmatrix} 1 & -2 & -4 \\ -2 & x & -2 \\ -4 & -2 & 1 \end{pmatrix} = \Lambda = \begin{pmatrix} 5 \\ -4 \\ y \end{pmatrix}$$
 相似. $\ \mathcal{X}$:

1 x, y.

② 求一个正交矩阵 P, 使得 $P^{-1}AP = \Lambda$.

提示: 利用特征值相同, 或者迹和行列式相同

- (3) 设二次型 $f(X) = X^T A X = 3x_1^2 + 4x_2^2 + 3x_3^2 + 2x_1x_3$.
 - ① 写出二次型 f 的矩阵;
 - ② 求正交变换 X = PY, 把二次型 f 化为标准形.
 - ③ 判断 f 是否为正定二次型.
 - ④ 证明: $\min_{X\neq 0} \frac{f(X)}{X^T X} = 2$.

提示: 需要掌握, 原版本有误已修改.

- 4. 证明题:
- (1) 设 λ 为 n 阶可逆矩阵 A 的特征值,证明 $\frac{|A|}{\lambda}$ 为 A^* 的特征值.

提示:利用定义 $A^*X = \frac{|A|}{\lambda}X$ 或者 $|A^* - \frac{|A|}{\lambda}E| = 0$.

5. 思考题:

- 矩阵 A 相似对角矩阵 Λ 是指:存在可逆矩阵 P,使得 $P^{-1}AP = \Lambda$. 思考这里的可逆矩阵 P 是否唯一.若不唯一,则设 P_1 和 P_2 都使得 $P_1^{-1}AP_1 = P_2^{-1}AP_2 = \Lambda$,问 P_1 和 P_2 的列向量有什么关系?答:不唯一,同一个特征值对应的列向量组(线性无关的特征向量)等价.
- 矩阵 A 正交相似对角矩阵 Λ 是指: 存在正交矩阵 P, 使得 $P^{-1}AP = \Lambda$. 思考这里的 P 是否唯一. 若不唯一,则设 P_1 和 P_2 都使得 $P_1^{-1}AP_1 = P_2^{-1}AP_2 = \Lambda$,问 P_1 和 P_2 的列向量又有什么关系? 答: 不唯一,同一个特征值对应的标准正交列向量组(两两正交的单位特征向量)等价.